Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fission Yeast SCYL1/2 Homologue Ppk32: A Novel Regulator of TOR Signalling That Governs Survival during Brefeldin A Induced Stress to Protein Trafficking.

Identifieur interne : 000B05 ( Main/Exploration ); précédent : 000B04; suivant : 000B06

Fission Yeast SCYL1/2 Homologue Ppk32: A Novel Regulator of TOR Signalling That Governs Survival during Brefeldin A Induced Stress to Protein Trafficking.

Auteurs : Katarzyna M. Kowalczyk [Royaume-Uni] ; Janni Petersen [Royaume-Uni, Australie]

Source :

RBID : pubmed:27191590

Descripteurs français

English descriptors

Abstract

Target of Rapamycin (TOR) signalling allows eukaryotic cells to adjust cell growth in response to changes in their nutritional and environmental context. The two distinct TOR complexes (TORC1/2) localise to the cell's internal membrane compartments; the endoplasmic reticulum (ER), Golgi apparatus and lysosomes/vacuoles. Here, we show that Ppk32, a SCYL family pseudo-kinase, is a novel regulator of TOR signalling. The absence of ppk32 expression confers resistance to TOR inhibition. Ppk32 inhibition of TORC1 is critical for cell survival following Brefeldin A (BFA) induced stress. Treatment of wild type cells with either the TORC1 specific inhibitor rapamycin or the general TOR inhibitor Torin1 confirmed that a reduction in TORC1 activity promoted recovery from BFA induced stress. Phosphorylation of Ppk32 on two residues that are conserved within the SCYL pseudo-kinase family are required for this TOR inhibition. Phosphorylation on these sites controls Ppk32 protein levels and sensitivity to BFA. BFA induced ER stress does not account for the response to BFA that we report here, however BFA is also known to induce Golgi stress and impair traffic to lysosomes. In summary, Ppk32 reduce TOR signalling in response to BFA induced stress to support cell survival.

DOI: 10.1371/journal.pgen.1006041
PubMed: 27191590
PubMed Central: PMC4871519


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fission Yeast SCYL1/2 Homologue Ppk32: A Novel Regulator of TOR Signalling That Governs Survival during Brefeldin A Induced Stress to Protein Trafficking.</title>
<author>
<name sortKey="Kowalczyk, Katarzyna M" sort="Kowalczyk, Katarzyna M" uniqKey="Kowalczyk K" first="Katarzyna M" last="Kowalczyk">Katarzyna M. Kowalczyk</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Manchester</wicri:regionArea>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
</author>
<author>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Manchester</wicri:regionArea>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide</wicri:regionArea>
<wicri:noRegion>Adelaide</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>South Australia Health and Medical Research Institute, Adelaide, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>South Australia Health and Medical Research Institute, Adelaide</wicri:regionArea>
<wicri:noRegion>Adelaide</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27191590</idno>
<idno type="pmid">27191590</idno>
<idno type="doi">10.1371/journal.pgen.1006041</idno>
<idno type="pmc">PMC4871519</idno>
<idno type="wicri:Area/Main/Corpus">000A52</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A52</idno>
<idno type="wicri:Area/Main/Curation">000A52</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A52</idno>
<idno type="wicri:Area/Main/Exploration">000A52</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fission Yeast SCYL1/2 Homologue Ppk32: A Novel Regulator of TOR Signalling That Governs Survival during Brefeldin A Induced Stress to Protein Trafficking.</title>
<author>
<name sortKey="Kowalczyk, Katarzyna M" sort="Kowalczyk, Katarzyna M" uniqKey="Kowalczyk K" first="Katarzyna M" last="Kowalczyk">Katarzyna M. Kowalczyk</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Manchester</wicri:regionArea>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
</author>
<author>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Manchester</wicri:regionArea>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide</wicri:regionArea>
<wicri:noRegion>Adelaide</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>South Australia Health and Medical Research Institute, Adelaide, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>South Australia Health and Medical Research Institute, Adelaide</wicri:regionArea>
<wicri:noRegion>Adelaide</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brefeldin A (pharmacology)</term>
<term>Cell Membrane (drug effects)</term>
<term>Cell Membrane (genetics)</term>
<term>Cell Survival (drug effects)</term>
<term>Cell Survival (genetics)</term>
<term>Endoplasmic Reticulum (drug effects)</term>
<term>Endoplasmic Reticulum (genetics)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Golgi Apparatus (drug effects)</term>
<term>Golgi Apparatus (genetics)</term>
<term>Lysosomes (drug effects)</term>
<term>Lysosomes (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Multiprotein Complexes (genetics)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Transport (drug effects)</term>
<term>Protein Transport (genetics)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (growth & development)</term>
<term>Sirolimus (metabolism)</term>
<term>Stress, Physiological (drug effects)</term>
<term>Stress, Physiological (genetics)</term>
<term>TOR Serine-Threonine Kinases (genetics)</term>
<term>Vacuoles (drug effects)</term>
<term>Vacuoles (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Appareil de Golgi (effets des médicaments et des substances chimiques)</term>
<term>Appareil de Golgi (génétique)</term>
<term>Bréfeldine A (pharmacologie)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (génétique)</term>
<term>Lysosomes (effets des médicaments et des substances chimiques)</term>
<term>Lysosomes (génétique)</term>
<term>Membrane cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Membrane cellulaire (génétique)</term>
<term>Phosphorylation (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Réticulum endoplasmique (effets des médicaments et des substances chimiques)</term>
<term>Réticulum endoplasmique (génétique)</term>
<term>Schizosaccharomyces (croissance et développement)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Sirolimus (métabolisme)</term>
<term>Stress physiologique (effets des médicaments et des substances chimiques)</term>
<term>Stress physiologique (génétique)</term>
<term>Survie cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Survie cellulaire (génétique)</term>
<term>Sérine-thréonine kinases TOR (génétique)</term>
<term>Transport des protéines (effets des médicaments et des substances chimiques)</term>
<term>Transport des protéines (génétique)</term>
<term>Vacuoles (effets des médicaments et des substances chimiques)</term>
<term>Vacuoles (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Brefeldin A</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Membrane</term>
<term>Cell Survival</term>
<term>Endoplasmic Reticulum</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Golgi Apparatus</term>
<term>Lysosomes</term>
<term>Protein Transport</term>
<term>Stress, Physiological</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Appareil de Golgi</term>
<term>Lysosomes</term>
<term>Membrane cellulaire</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Réticulum endoplasmique</term>
<term>Stress physiologique</term>
<term>Survie cellulaire</term>
<term>Transport des protéines</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Membrane</term>
<term>Cell Survival</term>
<term>Endoplasmic Reticulum</term>
<term>Golgi Apparatus</term>
<term>Lysosomes</term>
<term>Protein Transport</term>
<term>Schizosaccharomyces</term>
<term>Stress, Physiological</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Appareil de Golgi</term>
<term>Complexes multiprotéiques</term>
<term>Lysosomes</term>
<term>Membrane cellulaire</term>
<term>Réticulum endoplasmique</term>
<term>Schizosaccharomyces</term>
<term>Stress physiologique</term>
<term>Survie cellulaire</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Transport des protéines</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Bréfeldine A</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Phosphorylation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Target of Rapamycin (TOR) signalling allows eukaryotic cells to adjust cell growth in response to changes in their nutritional and environmental context. The two distinct TOR complexes (TORC1/2) localise to the cell's internal membrane compartments; the endoplasmic reticulum (ER), Golgi apparatus and lysosomes/vacuoles. Here, we show that Ppk32, a SCYL family pseudo-kinase, is a novel regulator of TOR signalling. The absence of ppk32 expression confers resistance to TOR inhibition. Ppk32 inhibition of TORC1 is critical for cell survival following Brefeldin A (BFA) induced stress. Treatment of wild type cells with either the TORC1 specific inhibitor rapamycin or the general TOR inhibitor Torin1 confirmed that a reduction in TORC1 activity promoted recovery from BFA induced stress. Phosphorylation of Ppk32 on two residues that are conserved within the SCYL pseudo-kinase family are required for this TOR inhibition. Phosphorylation on these sites controls Ppk32 protein levels and sensitivity to BFA. BFA induced ER stress does not account for the response to BFA that we report here, however BFA is also known to induce Golgi stress and impair traffic to lysosomes. In summary, Ppk32 reduce TOR signalling in response to BFA induced stress to support cell survival.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27191590</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2016</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Fission Yeast SCYL1/2 Homologue Ppk32: A Novel Regulator of TOR Signalling That Governs Survival during Brefeldin A Induced Stress to Protein Trafficking.</ArticleTitle>
<Pagination>
<MedlinePgn>e1006041</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1006041</ELocationID>
<Abstract>
<AbstractText>Target of Rapamycin (TOR) signalling allows eukaryotic cells to adjust cell growth in response to changes in their nutritional and environmental context. The two distinct TOR complexes (TORC1/2) localise to the cell's internal membrane compartments; the endoplasmic reticulum (ER), Golgi apparatus and lysosomes/vacuoles. Here, we show that Ppk32, a SCYL family pseudo-kinase, is a novel regulator of TOR signalling. The absence of ppk32 expression confers resistance to TOR inhibition. Ppk32 inhibition of TORC1 is critical for cell survival following Brefeldin A (BFA) induced stress. Treatment of wild type cells with either the TORC1 specific inhibitor rapamycin or the general TOR inhibitor Torin1 confirmed that a reduction in TORC1 activity promoted recovery from BFA induced stress. Phosphorylation of Ppk32 on two residues that are conserved within the SCYL pseudo-kinase family are required for this TOR inhibition. Phosphorylation on these sites controls Ppk32 protein levels and sensitivity to BFA. BFA induced ER stress does not account for the response to BFA that we report here, however BFA is also known to induce Golgi stress and impair traffic to lysosomes. In summary, Ppk32 reduce TOR signalling in response to BFA induced stress to support cell survival.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kowalczyk</LastName>
<ForeName>Katarzyna M</ForeName>
<Initials>KM</Initials>
<Identifier Source="ORCID">0000-0003-2349-7534</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Petersen</LastName>
<ForeName>Janni</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>South Australia Health and Medical Research Institute, Adelaide, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>C10888/A9015</GrantID>
<Agency>Cancer Research UK</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>C10888/A11178</GrantID>
<Agency>Cancer Research UK</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>20350-15-6</RegistryNumber>
<NameOfSubstance UI="D020126">Brefeldin A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020126" MajorTopicYN="N">Brefeldin A</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006056" MajorTopicYN="N">Golgi Apparatus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014617" MajorTopicYN="N">Vacuoles</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27191590</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1006041</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-16-00303</ArticleId>
<ArticleId IdType="pmc">PMC4871519</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2000 Feb;20(4):1234-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jun 16;22(12):3073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2013 Jun;5(6). pii: a013391. doi: 10.1101/cshperspect.a013391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23732476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 20;284(12):8023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19150980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Nov 23;20(22):1975-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Jul;24(7):841-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16823372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 15;283(33):22774-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2014 Nov 10;26(5):754-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25446900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Feb;12(2):155-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17295836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2006 Oct;17(10):4513-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16914521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1987 Apr 6;214(1):135-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3569512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Jun 1;122(Pt 11):1737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19417002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2877-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18287014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 May;39(3):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2008 Mar;7(3):1088-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18257517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 18;307(5712):1098-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Nov 25;203(4):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24247430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2013 Apr 3;32(7):926-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23481256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Apr 15;125(Pt 8):1920-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(5):e64448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23691220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Feb;20(4):1254-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 1970 Feb;9(2):199-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5413678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(3):e9537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20209057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2011;4(179):rs6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21712547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Open. 2012 Sep 15;1(9):884-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23213482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24556838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2014 Apr 1;127(Pt 7):1454-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24481816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Cell Biol. 2013;14:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23311891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Apr;7(4):e1001362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21490951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Mar;128(5):779-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7533169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2010 Nov 15;70(22):9360-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Jul 5;265(19):10857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2358444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Oct;10(10):1347-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7900424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2004;20:87-123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15473836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 Jul;24(7):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24698685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Aug 1;126(Pt 15):3324-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23690545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Mar;13(3):989-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 Sep 16;413(1):46-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21867682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Sep 30;269(39):24229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7929079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 May;4(5):409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12728274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Jul 16;59(2):270-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26118642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 1993 Feb;3(2):60-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14731730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2006 Apr;5(4):749-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16340016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Feb 1;7(3):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Dec;11(12):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Apr;4(4):799-813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2014 Aug;13(8):1925-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24763107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:795-823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Jul;15(7):3697-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7791776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 25;285(26):19705-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Nov 1;67(3):601-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1682055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Aug 25;261(24):11398-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2426273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 3;280(22):21539-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Manchester</li>
</region>
<settlement>
<li>Manchester</li>
</settlement>
<orgName>
<li>Université de Manchester</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Kowalczyk, Katarzyna M" sort="Kowalczyk, Katarzyna M" uniqKey="Kowalczyk K" first="Katarzyna M" last="Kowalczyk">Katarzyna M. Kowalczyk</name>
</region>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
</noRegion>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27191590
   |texte=   Fission Yeast SCYL1/2 Homologue Ppk32: A Novel Regulator of TOR Signalling That Governs Survival during Brefeldin A Induced Stress to Protein Trafficking.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27191590" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020